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The paper examines the stability of the uniform flow which approaches a two- 
dimensional stagnation region formed when a cylinder or a two-dimensional 
blunt body of finite curvature is immersed in a crossflow. It is shown that such 
a flow is unstable with respect to three-dimensional disturbances. This conclu- 
sion is reached on the basis of a mathematical analysis of a simplified form of 
the disturbance equation for the stream-wise component of the vorticity vector. 
The ultimate, or stable, flow pattern is governed by a singular Sturm-Liouville 
problem whose solution possesses a single eigenvalue. The resulting flow is one 
in which a regularly distributed system of counter-rotating vortices is super- 
imposed on the basic, Hiemenz-like pattern of streamlines. The spacing of the 
vortices is a unique function of the characteristics of the flow, and a theoretical 
estimate for it agrees well with experimental results. The analysis is extended 
heuristically to include the effect of free-stream turbulence on the spacing. 

The problem is similar to the classical Gortler-Hiimmerlin study of the sta- 
bility of stagnation flow against an infinite flat plate, which revealed the exis- 
tence of a spectrum of eigenvalues for the disturbance equation. The present 
analysis yields the same result when an infinite radius of curvature is assumed for 
the blunt body. 

1. Introduction 
It has been suspected for a long time that a uniform flow approaching a two- 

dimensional stagnation region is inherently unstable. We are thinking here 
about uniform incompressible flows past cylinders or other two-dimensional blunt 
bodies placed in crossflow, and hypothesize that random disturbances carried 
by the free stream cause the flow to become three-dimensional. The purpose of 
this paper is to confirm this hypothesis and to investigate the nature of the result- 
ing three-dimensional flow pattern when a steady state has set in. This will lead 
to the assertion that a truly two-dimensional flow fieldis impossible in the circum- 
stance. 

Perhaps the eadiest indication that the flow in the stagnation region of a blunt 
body acquires a complex pattern is contained in two papers by Piercy & Richard- 
son (1928, 1930), who concluded that “[there exists] a considerable area of in- 
stability extending upstream a distance about one-quarter of the length of the 
strut section and roughly covering the area for which the mean velocity is sen- 
sibly reduced below its value in the undisturbed stream .... Within the area 
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explored, velocity amplitude (the amplitude of the usually observed fluctuating 
component) increases rapidly as the stagnation point is approached”. More 
recent hot-wire measurements by Kuethe, Willmarth & Crocker (1959) disclosed 
the same behaviour near blunt-nosed bodies of revolution. In  all cases, the dis- 
turbed area extended over a distance of 30 to 50boundary-layer thicknesses 
from the surface. 

The second important indication is contained in Gortler’s (1940) well-known 
paper on flows along concave walls, which have been shown to become unstable 
and to develop a discrete system of counter-rotating vortices whose centres 
are spaced at fixed distances A, as measured between two vortices rotating in the 
same sense. Noting that the streamlines in a two-dimensional stagnation region 
are concave, Gortler (1955) conjectured that such flows might also become un- 
stable and suspected that they, too, should develop a discrete system of counter- 
rotating vortices whose wavelength A, like that along a concave wall, should be 
fixed by the characteristics of the flow. 

In  order to analyze the stability of stagnation flow mathematically, Ghtler 
(1955) idealized the problem in the same manner as the corresponding two- 
dimensional, undisturbed flow problem was idealized by Hiemenz (1911), and 
derived the disturbance equations for stagnation flow against an infinite flat plate. 
The equations were, in turn, studied by Hammerlin (1955), who demonstrated 
analytically that plane stagnation flow can sustain a three-dimensional distur- 
bance. He showed, in particular, that neutral time-dependent disturbances of 
the usual kind (i.e. with an amplification exponent p = 0) can exist for a contin- 
uous spectrum of wave-numbers a = 274 v/a)i/h confined to therange 0 < u2 < 1. 
He further showed numerically that no such disturbances could exist in the inter- 
val 1 < u2 < 5 if only exponentially decaying solutions at  infinity were admitted. 
Finally, he was able to prove that the disturbances can amplify if the sum of the 
amplification factor p, and the square of the wave-number a2, satisfy the con- 
dition 0 < p + a2 < 1. He did not, however, determine whether such amplified 
disturbances could exist for p+ u2 >, 1. 

The physical interpretation of this result is that in Hiemenz-type flow there 
exists an instability for a continuous spectrum of wavelengths. The question 
as to whether one particular wavelength would become amplified preferentially 
(i.e. with preaching a maximum for a given flow condition) remained unanswered. 

We take the view that the inconclusive nature of Hammerlin’s investigation 
is the result of an excessive idealization. In a real situation, we are interested in 
the characteristics of the flow field which results when a uniform stream, whose 
velocity at  y + co is V, = const, approaches a finite blunt two-dimensional body 
of finite curvature (radius of curvature R). The most important difference be- 
tween the Gortler-Hammerlin investigation and the real case, as the ensuing 
analysis will confirm, resides in the behaviour of the y-component, V(y), of the 
velocity of approach. This is illustrated in figure 1, which shows that, in a realis- 
tically formulated problem, the velocity V(y) starts out with a linear segment 
V N y in the y-direction, transforming continuously to a constant value, V,, 
as y -+ 00. In  Hiemenz’s idealization, which corresponds to R -+ co, the velocity 
V(y) remains proportional to y and tends to infinity as y -+ co. 
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In order to determine the flow pattern which forms ahead of a stagnation line, 
ideally we would like to trace the formation of the quasi-steady flow observed 
in a wind tunnel in the presence of random, or a t  least harmonic, fluctuations 
in the free stream as the flow starts from rest. This, however, is an impossible task, 
and the mathematical formulation must concentrate on what we suggest are the 
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FIGURE 1. Idealized and realistic flow situations compared. 

essentials of the problem. In classical analyses of stability problems, a time- 
dependent disturbance is assumed. For the Hiemenz case, this, as shown by 
Gortler (1955), can be taken to be of the form, 

I U. = [Uo(y) + ul(y) cos kx ePt] 2, 
v = - [v,(y) + v&) cos kz dt], 
w = kw1(y)sinkxePt, 

for the velocity field V(u, v, w), and of the form, 

p = P,(z,y)+p,(y)~oskxe8~ ( 2 )  

for the pressure field p(x ,  y, z) .  Here, k is the disturbance wave-number. In  the 
present analysis we postulate the existence of a steady three-dimensional flow 
field which is periodic in the x-direction (equation (6) infra), and examine whether 
such a field is compatible with the governing equations and boundary conditions 
of the motion. In  the last analysis, whether a disturbance of the Gortler type is 
used, or one which is time-independent, is a matter of deciding how to attack the 
problem in hand. In  all cases, the basic differential equations are essentially the 
same. The initial amplitude ePt grows to a size sufficient t o  excite non-linear 
interactions between the disturbance components; these interactions then 
retard the growth of the disturbance amplitude until, finally, a steady state, 
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characterized by some amplitude A ,  sets in. The analysis given here concentrates 
on this ultimate state. 

Departing from the work of Gortler and Hiimmerlin, we develop the relevant 
flow equations retaining the natural length scale imposed on the problem by 
the finite dimension of the cylinder cross-section (or curvature of the blunt 
body). We assume that the oncoming flow, while basically two-dimensional, has 
superimposed on it a three-dimensional, sinusoidal velocity perturbation in the 
span-wise direction and require the perturbation amplitude to be vanishingly 
small in the free streem. The resulting disturbance equations, linearized on the 
assumption of small perturbations in the usual fashion, yield a singular Sturm- 
Liouville eigenvalue problem when proper account is taken of the asymptotic 
nature of the real mean flow at infinity. Subsequently, we show that the theory 
for this type of eigenvaIue problem predicts the existence of a disturbance of 
unique wavelength, and compare an estimate for this wavelength with direct 
experimental findings, This comparison goes alittle beyond the scope of the theory, 
in that effects of free-stream turbulence on the flow pattern are discussed in the 
light of the new understanding provided by the theory. Finally, utilizing a 
result from the so-called vortex-stretching theory (Sutera, Maeder & Kestin 
1963), we supply a qualitative picture of the three-dimensional flow field. 

2. Governing equations 
As outlined in $1, the mathematical situation we wish to investigate is the 

steady flow of a viscous, incompressible fluid of constant properties in the neigh- 
bourhood of the forward stagnation line on a circular cylinder (or blunt body with 
radius of curvature R) placed normal to a uniform stream. The oncoming flow, 
while basically two-dimensional, has superimposed on it a three-dimensional, 
sinusoidal velocity perturbation whose amplitude is vanishingly small in the free 

FIGURE 2. Flow geometry for circular cylinder. 
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stream. Our immediate goal is to determine the wavelengths of those disturbances 
(if any) which the flow can sustain. 

The co-ordinate system r(6, y, z )  adopted for this study is shown in figure 2: 
6, y and x represent the tangential, normal and span-wise co-ordinates, respec- 
tively. In dimensional notation (now denoted by an asterisk superscript), the 
flow field is specified by the velocity V* = (u*, v*, w*) and the pressurep*((, y, z) .  
The fluid properties of interest are the density, p = const, and the kinematic 
viscosity, v = const, and the fundamental equations describing the flow are: 

continuity, v . v *  = 0, (3) 

momentum, (V*.V)V* = --vp*+vv2v*. (4) 

and 
1 

P 
These equations are subject to  the boundary conditions, 

y = 0 (wall), 

y -+ 00 (free stream), u* -f 0, v*+-vm, w* + 0. 

V*(& 0,z) = 0 

3. Assumed form of solution 
Solutions to the above equations are investigated only in a narrow wedge- 

shaped domain (see figure 3) encompassing the stagnation plane (T. Strictly 
speaking, it will be necessary to show that the solution of the differential equations 
which are simplified by virtue of this restriction are asymptotically the same as 
the solutions of the full equations in the same region. In making this restriction, 
we assume that the resulting equations represent an acceptable approximation 
to the actual flow. If this is granted, it is realized that the same similarity as 
that used by Hiemenz continues to apply. Thus, we assume the following form 
of the solution: 

Here, the subscript Orefers to the mean (unperturbed) flow, whereas the subscript 
1 refers to the superimposed disturbance. The fundamental wave-number of the 
periodic secondary motion is k. It must be emphasized that the mean flow com- 
ponents Uo(y) and &(y) assumed here must be conceived as functions which are 
different from those in Hiemenz's solution, because the asymptotic behaviour 
of &(y) as y -+ co is different; this was explained earlier in conjunction with 
figure 1.  

An examination of the basic flow equations (3) and (4) in the light of the 
assumed form of solution (6) reveals that it is advantageous to introduce the 
vorticity w* = (o%,wy*,w,*) and to treat its (-component, w:, as an additional 
unknown. By definition, the vorticity is 

2w* = v x v*, 
30 

(7) 
44 



466 

giving, from the assumed solution (6), 
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where 

2wT = 2wT(y) sin kx, (8) 

1 dwf 
2wf(y) = ---kw;(y). 

k dY 

Replacing the x-component of the momentum equation (4) with the$-component 
of the vorticity-transport equation, 

(V*. V) w* = (w*. V) V" + Y V 2 0 * ,  (9) 

FIGURE 3. Narrow wedge-shaped domain encompassing stagnation plane u. 

we can eliminate the velocity wT in favow of the vorticity perturbation wf. 
This procedure also eliminates the pressure perturbationp? and results in simpler 
equations than those which would be obtained by the straightforward elimina- 
tion of pT from (3) and (4). 

4. Linearized disturbance equations 
The working equations for the analysis are obtained by substituting the 

assumed solution (6) and the computed vorticity (8) into the continuity equation 
(3),  the $- and y-components of the momentum equation (4) and the $-component 
of the vorticity transport equation (9). 

Neglecting the products of the disturbance quantities we obtain a set of 
equations which is sufficient to determine the velocity field and the unperturbed 
pressure field. If desired, the perturbed pressure field can be computed subse- 
quently with the aid of the z-component of the momentum equation (4). 

Approximations for the differential operations involving the V-operators 
are employed to evaluate equations (3), (4) and (9) within the narrow region 
shown in figure 3. These approximations are readily derived from the well- 
known formulae for differential operations in a system of cylindrical co-ordinates 
( r ,  19, x )  by setting r = R + y, 13 = €JR and x = x .  Thus, the radial co-ordinate r 
is replaced by the normal co-ordinate y, measuredfrom the surface; the azimuthal 
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co-ordinate 0 is replaced by the tangential co-ordinate CIR (R is the radius of the 
cylinder); and it is assumed that ( /R  < 1. 

When the above steps are followed, the continuity equation (3) separates into 
the equations : 

(104 

and U.T(Y) -2 [ (1 +$) v;] + (1 +g) wl*(y) = 0. 
dY 

The left-hand side of the first equation comprises terms which are independent of 
the co-ordinate x ,  whereas the left-hand side of the second equation is the coeffi- 
cient of sin kz. In order to satisfy the full equation (31, each group of terms must 
vanish individually. Continuing in like manner, we separate the remaining equa- 
tions into two parts: a set of equations for the mean-flow variables U,, V,, Po, 
and a set of equations for the disturbed-flow variables u:, v;, w: (w: and p: to 
be eliminated). 

The equations are now rendered dimensionless through the introduction of the 
following variables, which are scaled with respect to the radius R and the free- 
stream velocity V, : 

(i) magnified normal co-ordinate: 

1 %  (ii) mean velocity: U = U,R/V,, V = --. 
€ V,’ 

(iii) disturbedvelocity : 

(iv) wave-number : 01 = E R ~ .  

Finally, we define a new variable, 

# = - -  1 %  
2€V,’ 

and eliminate U,(y) from the equations by means of the mean-flow continuity 
equation (10a). The function # is the ‘cylindrical ’ counterpart of the Hiemenz 
function q5H = (av)+V,. Since the potential flow about a circular cylinder 
(Milne-Thomson 1960, p. 151) has the constant 

a = 2V,/R, 

it can be shown that # and #H converge to each other in the boundary layer, so 
that 

30-2 
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The (linearized) disturbance equations become 
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(13) 

The equation for u stems from the [-momentum equation (4); the equation for v 
is derived by the elimination of w between ( 8 a )  and ( l o b ) ;  and the equation for 
w follows from the [-vorticity equation (9). I n  view of the restriction of the equa- 
tions to a narrow region surrounding the stagnation plane, a term containing 
(LJR)2 was dropped from (14). 

An equation for the mean flow (i.e. the function q5) is obtained by combining 
the c- and y-components of the momentum equation (4); this also supplies an 
expression for the mean pressure field in terms of derivatives and integrals of 4. 
The resulting mean-flow equation is 

(1 +q) [q5“”’+#q5”-q5’q5”]-2€[€2#2+2€#q5’+(1 +er)q5”q5q5”] 

Owing to its complexity, this equation will not be solved; instead, a suitable 
approximation for q5, valid in the wedge under consideration, will suffice for the 
present study. 

The boundary conditions on the above equations derive from the original 
boundary conditions (5) and are as follows: 

7 = 0:u  = 21 = v’= 0, q5 = q 5 ’ =  0;  (15a)  

,r/ + co: u + 0, v‘ + 0,  $6 + (24-1, q5‘ --f 0. (15b) 

The boundary conditions on w are implied by (13); their derivation will be post- 
poned temporarily. 

In  the disturbance equations (12)-( 14), the terms multiplied by powers of the 
scale factor E = Re-4 arise as a result of surface curvature. For a typical range 
of operating Reynolds numbers, say Re = O( lo5),  < 1 and the terms involving 
E can be neglectedprovided that this does not destroy the character of the equations as 
7 + 00. The disturbance equations simplify to read 

(16) u”+#u’-(2f$’+a2+sq5)u = - (  1 + €7) #”, 

W ”  + (q5w)’ - a2w = 0. (18) 
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Within the boundary layer, $ can be represented by the Hiemenz function, 
because €7 < 1 as well as q5 < 1.  Outside the boundary layer, however, the mean- 
flow function $ departs from the Hiemenz solution and becomes asymptotically 
constant in the free stream. This behaviour, which is a consequence of the body's 
finite size, significantly affects the eigenvalue problem for the wave-number a. 

5. Behaviour of the vorticity w 

(7 -+ co) solution, 
Setting # = (2~1-I and #' = 0 in (18), we obtain the bounded asymptotic 

( a +  0)) (19) 

Area positive 
Slope positive 

FIGURE 4. Impossible behaviour of vorticity w in finite-body case. (Area under curve and 
slope at 7 = qo must have opposite sign.) 

(4 @of = 0; 4 7 0 )  > 0. ( 5 )  WfTo) = 0; 6l"TO) < 0. 

which satisfies (17) and the conditions (1  5 b ) ,  i.e. 

limw'(7) = 0. 
t-+* 

The solution (1 9) contains the information that 

limw(7) = 0. 
t-fm 

These results in hand, it can now be demonstrated that, for real wave-numbers 
(a2 > 0) ,  the function w has no zeros on the interval [ O , c o ) .  To see this, we 
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suppose that w has a number (at least one) of zeros, the greatest of which 
is rl0, and integrate (18) between qo and infinity to obtain 

Under the above assumptions w must behave as shown in figures 4 (a )  or 4 ( b ) ;  but 
both behaviours contradict (22) for a2 > 0, and therefore it follows that w has 
only one sign (i.e. no zeros) on the interval [0, co) for real values of a. Moreover, 
since $(O)w(O)  = 0, (22) holds for vo = 0 and shows that 

-o (O)w’ (O)  > 0. (23) 

With these preliminaries established, the eigenvalue problem can now be 
examined. 

6. The eigenvalue problem 
The purpose of § 6 is to investigate the eigenvalue problem posed by (16)-(18), 

with the boundary conditions (15a, b),  and to discover the nature of the eigen- 
value spectrum, i.e. those wavelengths a > 0 for which solutions to the equations 
exist. There is sufficient information available on the boundary conditions and 
on the behaviour of the vorticity to conclude that the nature of the spectrum is 
determined solely by the vorticity equation (18). Naturally, the details of the 
eigenfunctions depend on all of (16)-(18), although no attempt will be made 
here to solve the complete set. 

6.1. The singulccr Xturm-Liouville problem 

The substitution, 
4 7 )  = f(7) exp [ - ;su” &Y) 4, 

transforms (18) to the canonical form, 

f”-(&qP-*$’+a”f= 0. (25) 

f’(0) +rf(O) = 0, (26) 

In  view of the inequality (23), the wall boundary condition onf can be expressed 
as 

where y > 0 is a constant. The exact value of y is unimportant for the present 
argument; it must be found from the complete solution to the problem. The 
asymptotic (7 --f co) solution to (25) is 

1 fa-exp[  -G(l+16u2a2)4r/ 1 . 

Equation (251, with its boundary condition (26) and asymptotic behaviour (27), 
constitutes the familiar and well-treated singular Sturm-Liouville problem. 
In the present version of this problem, solutions are sought to an equation of the 
form, 

f”+[IU-d7)1f= 0 (a < v < b) ,  (28) 
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with the boundary condition (26), when the interval (a, b) is semi-infinite. The 
entire problem, and in particular the case of the semi-infinite interval [0, co), is 
treated extensively by Dunford & Schwartz (1963). What follows is a restate- 
ment of certain theorems and corollaries which are relevant to equation (25) ; 
they reveal the nature of the eigenvalue spectrum. 

6.2. Nature of the entire eigenvalue spectrum 
(i) Let L be a real second-order differential operator of the form 

d2 
L = --++(r) 

dr2  
( 2 9 4  

q(7) = &b2-i$’, and p = -a2 (29b, c )  

(for the moment the restriction a2 > 0 will be dropped and p will be considered 
a real number, positive or negative). Then (25) reads: 

L[fl = P f ,  (30) 

with the boundary condition (26) and asymptotic behaviour (27), and the oper- 
ator is formally self-adjoint. This property, a prerequisite for the current study, 
is readily established with the aid of an auxiliary function g as follows. 

By definition, the operator L is self-adjoint when it equals the adjoint operator 
LA given by the inner product expression 

IOW sL[fl d r  = fLAC91 d7. 

After integration by parts, the left side of (31a)  yields 

thus, L = LA if the concomitant [fq’-f’g]g = 0. Since this is possible when 
g satisfies a boundary condition (26) identical to that on f, the operator is formally 
self-adjoint. 

(ii) (See Dunford & Schwartz 1963, Corollary 56, p. 1481, and theorem 53, 
p. 1479.) Let the real, formally self-adjoint differential operator L of (30) be de- 
fined on the interval [0, w), and suppose that 

the remainder ( -  co, p0) of the eigenvalue spectrum consists of an infinite 
sequence of isolated points converging to po. The isolated points can be enu- 
merated in the ascending sequence p1 < p2 < . . . < ,up, with pp + po as p + co, 
and with each eigenvalue p, there is associated a unique eigenfunction fn of 
the operator L. The eigenfunction fn has precisely n- 1 zeros. 
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This result establishes the intimate dependence of the eigenvalue spectrum 
on the coefficient function q(7). All that remains now is to show that the pre- 
ceding conditions on q are satisfied in the present problem and to restrict the 
entire spectrum ,u to the special case p < 0 (a2 > 0) .  

6.3. T h e  coeficient function q(7) 

At large distances from the boundary, the mean-flow 4 is represented by the 
function 

which is obtained by substituting a dimensionless form of the potential-flow 
solution for a cylinder (Milne-Thomson 1960, p. 151) into (11 ) .  Then (29b) 
becomes 

1 
limq(7) = __ = po, ( 3 2 4  
7- 1 6e2 

and 
1 

limy2[q(q)-,u0] = -- < - a  
q+m 8e4 (e < 1); 

hence, the conditions of the preceding theorem are met. We now need to deter- 
mine the behaviour of the function q in the boundary-layer region in order to 
solve the eigenvalue problem. 

Near the boundary, the mean-flow r$ is the Hiemenz function c j H .  When QH 
is substituted into (29b), the resulting expression for a(?) is found to possess a 
minimum a t  the point qmin given by q'(vmin) = 0, or 

r $ i d r m i n )  #h(qmin)  - cjb(7min) = 0. ( 3 5 )  

$11 = &#;1"+'I~ (0  G 'I < 21, (36) 

The Hiemenz function can be approximated to within 10 yo by the expression 

which represents the f i s t  two terms in the Taylor-series expansion for it. Using 
the approximation (36), we find that the minimum, qmin, of q occurs at  

giving 

whcre s = (2/&)*. The Hiemenz solution (Schlichting 1968, p. 87) for the wall 
shear rate is 4: = 1.233; this leads to 'Imin= 0.94, equation (37). At this value of 
7, the approximation (36) is good to 2 yo in cjbH. 

The complete behaviour of the coefficient function q(7)  is represented by the 
dashed line / L  = 0 in figure 5 ,  which is a sketch (not to scale) of the difference 
q(7)  -p  for several values of p. This figure graphically displays the connexion 
between the coefficient function q(7) and the entire eigenvalue spectrum, p, 
whose nature was described in the previous section. For example, taking the nth 
eigenvalue, ,urn, we see from figure 5 that q(7) -,un < 0 for 7 < 7,. Consequently, 
intheregion 9 < qn,  the solution to (28) willoscillate, passing through zero precisely 
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n - 1 times. On the other hand, all solutions corresponding to eigenvalues p 2 p,, 
have infinitely many zeros. 

6.4. The restricted spectrump < 0 (a2 > 0) 

It follows from the development in 3 6.2 (ii) that there exists only one eigenvalue 
,ul to which there corresponds a unique eigenfunction fl having no zeros on the 

FIGURE 5. The function q(7) - p  for (28); nature of the eigenvalue spectrum p: 
Po = limn(7). 

v+m 

interval [O,oo) .  But, as shown in 95, the vorticity w (and, consequently, the func- 
tion f defined by (24)) cannot have zeros on the interval [O,co)  for real wave- 
numbers, and therefore the restricted spectrum a2 > 0 can contain only one wave- 

(39) number, 

if the problem is to possess a solution. 

for the solution f not to have zeros is 

a2 = - Pl ’ 0, 

Recalling (28),  it becomes evident that a sufficient (but not necessary) condition 

d T ) - P  > 0 (all 7); (40a) 

otherwise, if q(7) -p  < 0 over a range of 7, the solution might oscillate (but not 
necessarily). Thus, (40a) sets the limiting condition 

%nin-p1= 0 
evidenced in figure 5. 

7. Estimate for the disturbance wavelength 
The combination of (38), (39) and (40b)  provides us with the estimate 
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giving a disturbance wavelength 
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2n 2nR A = - = -  
Ic aRe4’ 

or 

where A, = 2nR/Re* is the neutral wavelength defined in the vorticity-ampli- 
fication theory (Sutesa et al. 1963), and introduced here for convenience. In- 
corporating the Hiemenz solution & = 1.233 in our estimate (41 b), we find the 
numerical result that the unique disturbance wavelength 

h = 1.79h0 = 1*79(2nR/ReJ). (41c) 

The physical interpretation of the preceding results is that two-dimensional 
stagnation flow against a two-dimensional blunt model is inherently unstable. 
Even though the solid body is two-dimensional, the flow itself becomes three- 
dimensional in that it curls up into a system of counter-rotating vortices distri- 
buted with a unique wavelength in the z-direction. Owing to the assumption 
expressed in the boundary conditions (15b), the onset of such an instability must 
be expected to occur even in the limiting case of a vanishing disturbance at  y 3 00. 

Experimentally, this would correspond to a turbulence-free oncoming stream. 
Furthermore, as the Reynolds number Re is reduced, the spacing h becomes large 
and, ultimately, unobservable. 

8. The case when R -+ co 
It would be interesting at  this point to re-examine our stability argument, and 

to clarify the way in which it changes in the asymptotic limit when the radius 
of curvature R+ 00. In  this limit, our problem would become identical with that 
studied by Hammerlin (i.e. with an investigation of the stability of Hiemenz’s 
flow). This has been done, but we find that a detailed account would become 
tedious for the reader. Instead, it ma) be sufficient to give a short account of the 
principal result. 

The essential difference between the two cases resides in the assumed asymp- 
totic behaviour of tbe function +(r). If  $(r) were to be unbounded, the asymptotic 
solution (7 + 00) for the function f in (25) would also become unbounded; the 
vorticity w could acquire at  least one zero; and the operator L, defined in (29a), 
would cease to be formally self-adjoint. As a result, the unique eigenvalue, a 
from (39), would cease to exist, and would be replaced by a continuous spectrum 
0 < a2 < 1.  This, as the reader recalls, is essentially the same result as the one 
obtained by Hammerlin. 

9. Experimental results 
Utilizing the results from a series of wind-tunnel tests described elsewhere 

(Kestin & Wood 1969), we have secured experimental confirmation for our esti- 
mate of the unique disturbance wavelength. Our experiments consisted of flow 



O n  the stability of two-dimensional stagnation Jlow 475 

visualization studies, which were performed with the aid of oil-coated cylinders 
of different diameters placed in cross flows of various free-stream velocities (Rey- 
nolds numbers) and turbulence levels. After a relatively short exposure to the 
stream, the oil film on the surface of each cylinder was parted by the flow into a 
pattern of regularly spaced radial streaks like those shown in figure 6 (plate 1) 
for a set of representative conditions. The pitch of the streaks was found to corre- 
late well as a function of both Reynolds number and turbulence intensity, and 
the correlation is represented in figure 7. This demonstrates that the spacing, 
normalized with respect to the cylinder diameter D, is inversely proportional to 
Re*, where the factor of proportionality decreases with increasing turbulence 
intensity. 

Re-* x 10s 

FIGURE 7. Measurements for the dimensionless wavelength AID. 

In order to interpret these results, it is necessary to realize that the wall shear 
stress computed from the three-dimensional velocity field (6) consists of an un- 
disturbed value plus a component which is periodic in the axial direction. Thus, 
since the wall shear stress is responsible for parting the oil film, it becomes evident 
that the observed streak spacing is identical with the wavelength h of the three- 
dimensional instability. Hence, taking into account the remarks made in f 7, 
we extrapolate the measured spacings to the limit of zero turbulence intensity, 
and obtain the result that h/h, = 1.56 (Tu -+ 0). This value is appropriate for 
comparison with our analytical estimate (h/h, = 1-79) derived earlier; the rela- 
tively good agreement (14 %) between experiment and theory thus confirms the 
stability analysis. If, instead of the approximation (36), the tabulated numerical 
solution for the Hiemenz function (Schlichting 1968, p. 90) were used in the evalu- 
ation (36), the estimate would become A/ho = 1.72, which is only 10% above the 
experimental value. 

The preceding results show that the experiments extrapolate to the analysis. 
We now demonstrate that, at  least qualitatively, the theory can be extended to 
predict the observed wavelength at non-zero turbulence levels. The demonstration 
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turns on the experimental measurements of Smith & Kuethe (1966), which 
reveal that the wall-shear rate ${ is an increasing function of the turbulence 
intensity. Hence, putting q5: = $g(Tu) in (41b), we conclude that an increase 
in turbulence intensity will cause a decrease in wavelength (at constant Reynolds 
number), if we accept heuristically that the form of equation (41 b) remainsvalid 
for turbulent free streams. A feeling for the qualitative validity of this extension 
can be gained from the following example. At a free-stream turbulence level of 
6 %, Smith & Kuethe (1966) measured a rate of wall shear at the stagnation 
line of a circular cylinder in cross flow that was increased by 50 % over its low- 
turbulence value. From (41 b) ,  the wavelength corresponding to such an increase 
in & is A/A, = 1.37 (Tu = 6%);  this compares favourably with the result 
A/A, = 1.27 determined by extrapolating our measured streak spacings to 
TU = 6%. 

Plow pattern 
In order to obtain a picture of the three-dimensional flow field without solving 
the disturbance equations (1 6)-( 18) for their eigenfunctions, we refer to an exist- 
ing analysis. This is the so-called vorticity amplification theory (Sutera, Maeder 
& Kestin 1963; Sutera 1965), which succeeded in determining the flow pattern 
in a Hiemenz-type boundary layer when a periodic, harmonic disturbance, of 
given wavelength A, has been imposed on the free stream in the x-direction. Such 
a disturbance is equivalent to a continuously distributed vorticity characterized 
by axes which are aligned in the x-direction, and which are susceptible to 
stretching and amplification by the divergent streamlines in a stagnation flow. 

4 Y Stagnation 

L 

FIGURE 8. Three-dimensional flow pattern deduced with the aid of the 
vorticity-amplification theory. 
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This solution can be utilized to provide a qualitative representation of the 
three-dimensional flow pattern which results from the instability discussed 
earlier, because the latter also imposes a harmonic disturbance of a fixed wave- 
length on the approaching flow. 

Figures 8, 9 and 10 depict the streamlines of this kind of flow field. Using the 
method of isoclines, we have traced the streamlines from a numerical solution 
provided by Williams (1968) for a disturbance of an (arbitrary) amplitude A = 3 
and an imposed wavelength A/& = 1-67. Figure 8 is a dimetric drawing of two 
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FIGURE 9. Projection of the flow pattern on the stagnation plane. 
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> 
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FIGURE 10. Projection of four representative streamlines on the body-tangent 
plane (2-scale compressed). 
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symmetric stream surfaces, each containing four representative streamlines. 
Figure 9 is a projection of the flow pattern on the stagnation y, z-plane (this 
sketch contains additional streamlines not shown in figure 8). Figure 10 depicts 
the projection of four streamlines, one contained in each of the four neighbour- 
ing cells from figure 9, on the body-tangent x, z-plane. 

The nature of the three-dimensional flow is now apparent: the flow pattern 
consists of stationary, span-wise repetitive cells of width h equal to the instability 
wavelength. Each cell contains two cores of concentrated vorticity, which are 
formed by the rolling-up of concentric stream surfaces. The cores are located 
slightly outside the edge of the classical (Hiemenz) boundary layer a,,, and ex- 
tend transversely across the stagnation line. The streamlines of the flow are 
wrapped around the cores in helix-like spirals, the pitch of the spirals increasing 
with increasing distance away from the stagnation line. 

A striking experimental confirmation of the preceding behaviour of the flow 
is provided by the previously unexplained smoke visualization pictures taken 
by Sadeh (1968). In  this study, smoke was injected near the boundary layer in the 
stagnation flow over a plate of finite width and the resulting flow pattern was 
photographed. The photographs shown in figure 11 (plate 2) suggest that the 
streamlines of the disturbed flow do, indeed, form helix-like spirals. 

The preceding flow pattern is also consistent with our flow visualization studies 
(see figure 6, plate l ) ,  with the ablation studies reported by Brun, Diep & Kestin 
(1966), and with the experimental work described by Kayalar (1969). 
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FIGURE 6. Streak pattern for thc conditions Re = 75,000; Tu = 1.2%; D =  11.3 cm. 

KESTIN & WOOD (Facing p .  480) 
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FIGURE 11.  Smoke visualization photographs of flow pattern (Sadeh 190s). 

KESTIN & WOOD 


